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Non-linear oscillations of a nearly integrable Hamiltonian system with one degree of freedom, which is 

2x-periodic in t, are investigated in a small finite neighbourhood of equilibrium. The Hamiltonian is 

assumed to be analytic, the linearized system is stable, and its characteristic exponents *iv are purely 

imaginary, where 3v is an integer. The equilibrium position of such a system is generally unstable and 

six trajectories exist that asymptotically approach the equilibrium point as t -_) f= [l, 21. 

It is shown that for most initial data the motion is quasi-periodic in the neighbourhood of the 

equilibrium. The existence of stable 6x-periodic motions near an unstable equilibrium position is 

established. It is shown that, irrespective of instability, trajectories beginning sufficiently close to an 

equilibrium point will always remain at a finite distance from it. An estimate is obtained for this 

distance. The stochastic nature of the motion near trajectories asymptotic to the equilibrium point is 

discussed. 

1. STATEMENT OF THE PROBLEM 

We shall study the motion of a Hamiltonian system with one degree of freedom, the 
Hamiltonian being 

H= H(“‘(X,y)+~(‘)(X,y,t)+&2H(2)(X,y,t)+... (1.1) 

where x and y are the coordinate and the momentum, E is a small parameter (0 c ~41) and H is 
an analytic function of E, continuous and 2x-periodic in t. The origin x = y = 0 is an equilibrium 
position of the system and H is analytic in X, y in the neighbourhood of the origin. It is also 
assumed that, apart from E, H also depends on one or more other parameters. 

Let us assume that the system, linearized with respect to x and y, is stable in Lyapunov’s 
sense, and its characteristic exponents flv are purely imaginary (where v is a real number 
other than zero). We shall assume that 3v is an integer, i.e. the system has a third-order 
resonance. Then, in the general case, the introduction of arbitrarily small non-linear terms into 
the equations of motion will disturb the linear stability of the equilibrium position [l]. 

Instability of a Hamiltonian system at resonance is closely related to the existence of trajectories that 

are asymptotic as t + zt- to those in unperturbed motion [3]. It has been shown [2] that a system with one 

degree of freedom having a third-order resonance has six asymptotic trajectories, three of which tend to 

those in unperturbed motion as t + +oo and three as t + -00. 

Consider a system with Hamiltonian 
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(1.2) 

This system has a resonance 3v = 1. 
Changing to a rotating system, of coordinates x,, x2, where 

t . f . 1 t 
X=COS~X, -m-x2, y=singx, +cos3x2 

3 

and introducing canonically conjugate polar coordinates 8, p by the relations 

x, = J2pcos8, x2 = J2psin8 (1.3) 

we obtain a new Hamiltonian 

H=p2+&os30 (1.4) 

If we ignore fourth-order terms in x and y in (1.2), the Hamiltonian (1.4) becomes H = 
pxcos38. A system with this Hamiltonian in coordinates x1 and x, has the phase portrait 
shown in Fig. 1. The only trajectories asymptotic to the origin are those with constant values of 
the angle 8: 8 = d6+m/3 (n = 1, 2, . . . ,6). In that situation 

p(t) = 4p(O)[ 2 - (-1)” 3p~(0)r]-2 

If n is odd (even), the trajectories are asymptotic to the point x1 = x, = 0 as I 3 +oo (t + -). 
The origin is unstable. If the initial values of 8 differ from n/2, 71c/6 or llsc/6, then for 
arbitrarily small initial data p(O) # 0 the trajectories move away from the origin as t increases, 
reaching arbitrarily large distances. 

If the fourth-order terms in (1.2) are included, the system has the phase portrait illustrated in 
Fig. 2. In a sufficiently small neighbourhood of the origin, as before, there are six asymptotic 
trajectories. However, in a finite neighbourhood these trajectories are not just asymptotic, but 
homoclinic doubly asymptotic [4, p. 33.51: the trajectories approach the origin both as t + +m 

Fig. 1. Fig. 2. 
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and as t + --oo. Because of the fourth-order terms in (1.2), the six asymptotic trajectories of Fig. 
1 merge two by two into the three doubly asymptotic homoclinic trajectories of Fig. 2, and the 
motion occurs in a bounded neighbourhood of the origin. 

Consideration of this example raises several questions about the behaviour of the Hamilton- 
ian at third-order resonance. For example, will the trajectories of the system remain in a 
bounded neighbourhood of the origin for all t if the Hamiltonian (1.2) is modified by adding 
small terms periodic in t ? Under those conditions, what can one say about non-linear 
oscillations in a small finite (but not infinitely small) neighbourhood of the origin? 

The present paper is devoted to a study of these and some other questions for systems with 
the Hamiltonian (1.1). 

2. PRELIMINARY TRANSFORMATION OF THE HAMILTONIAN 

The functions H(‘) occurring in expansion (1.1) are represented by the series 

H”’ = f H(‘)(x y t) 
k , 9 

k=2 

where Ht’ is a form of degree k in x and y. 

(2.1) 

The variables x and y may be chosen in such a way that all the second-order forms in (1.1) 
are in normal form v(x2 + y2)/2. This choice of x and y may be achieved by applying a linear 
canonical 2x-periodic (in t) change of variables [l]. For sufficiently small E this change of 
variable will be analytic in E. In addition, we may assume without loss of generality that x and y 
have been chosen in such a way that the series expansions (2.1) of H(O), do not contain third- 
and fifth-degree forms, while the fourth-degree form is a function of the sum x2 + y* only. This 
may be done by applying a non-linear normalizing transformation constructed by the Deprit- 
Hori method [5] or the classical Birkhoff method [6]. 

If x and y have been chosen as specified, then, after the canonical transformation x. = E-‘x, 
y. = E-‘y, the Hamiltonian (1.1) becomes 

H=v(x,~+~:)/~+&~[H~')(x,,~.,~)+c(x,Z+~~)~/~]+ 

+~~[H:~'(~,,y,,r)+H~"(x..y.,r)]+O(&~) (2.2) 

where c is a constant determined in the non-linear normalization of H(O). We shall assume that 
c # 0 and also that the averages of the functions Hr’, Hr’, HT’ over the explicitly occurring 
time are zero. Otherwise, these averages may be included in H(O), in which case the only 
further change occurs in the constant c in (2.2)-but this change is only by a quantity of the 
order of E. 

Let 3v = N. Applying a Birkhoff-type non-linear canonical change of variables x., y* + E,, IJ, 
where 5 and TJ are 2rr-periodic in t, we can simplify the third degree form HI” in (2.2). This 
transformation leaves terms of order e3 in the Hamiltonian (2.2) unchanged, and we obtain [l] 

H=~(~~+~~)12+~~[~(5~+~*)~/4+(~~sinNr+~~cosNr)(~~-3~5~)+ 

+(K, cosNt-~~sinNt)(5~ -~&J*)]+E~[H~~'(E,,T],~)+H/')(~,T],~)]+O(E~) (2.3) 

where K, and K, are constants. We shall assume that K: + K: f 0. 
We now replace 5 and q by new canonical conjugate variables cp and r through the canonical 

transformation 

sin% =q(Kf +Kz)-%, COSCp, = K2(Kf +K;)-): (2.4) 



A. P. Markeyev 7% 

The new Hamiltonian is 

F=E2~Cr2+~~~COS3CP)+E3[FJ((P,T~t)~F4((P,T.t)]+O(E4) W) 

where K = 2[2(~: + ~$1~; IJ, and Fd are the functions @‘) and @ of (2.3) after the substitu- 
tion (2.4); these functions are 6n-periodic in t. 

For convenience, we shall use one more canonical transformation 

r=tc2c”p, q,=s(B-x/6)+x/6 (S=signc) 12.6) 

and introduce a new independent variable ‘t = E?C’ I c 1-l t. The equations of motion in the new 
variables are 

d0ldz=i?y/ilp, dc\Idz=-&IXI (2.7) 

Y=Yo(e,p)+~,(f),p,z~+o(~*~ w9 

y,=p2+p&0s3e, y1 =:c~K~(~+F~) (2.9) 

where F3 and F4 are the functions of (2.5) after the substitution (2.6). The function y1 may be 
written as 

yi =p~(a~3)c0se+~~3)sinO+a~3)cos30+j3(33)sin30)+ 

+p2 (al;‘) + aF’ cos 28 + f!i4’ sin 28 + ai4) oos4B + fii4” sin 48) 

a!n) = 
J (2.10) 

where aFm”, by) are constant Fourier coefficients and 

h = (2 I 9)fcllc-2&-2 

The prime on the summation symbol in (2.10) indicates 
for k*O. 

(2.11) 

that the summation is performed only 

3. MOTION OF THE UNPERTURBED SYSTEM 

Putting E = 0 in (2.7), we obtain the equations of motion of the “unperturbed” system 

dei&=2p+~p)4cos3e, dpfd%=3pKsin3Q (3.1) 

which are satisfied by the Hamiltonian y. of (2.9). 
The unperturbed system has a first integral 

p* + pX cos 38 = h (h = const) (3.21 

The phase portrait of system (3.1) has periodic 2d3 with respect to 0; it is shown in Fig. 3. In 
the x,, x2 plane, where X, and x, are defined by (1.3), the phase portrait is shown in Fig. 2. 
When h c -27 I256, the motion is impossible. The value h = -W/256 corresponds to an equili- 
brium position p* = 9116 : 9, = (21-1)x/3 (i= 1, 2,3). If -271256 < Iz c 0 (oscilIatory domain), 
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Fig. 3. 

the variables p and 8 vary periodically in the neighbourhood of their equilibrium values p. and 
8.. When that happens p2++, where pl, p2(Ocpz <9/16<p, < 1) are the real roots of the 
equation pz - pK = h. In the oscillatory domain Eqs (3.1) are integrable in terms of elliptic 
functions. Introducing the notation 

2o=l-Pi -Pz, f=-3a(p, +p+2h, p’=f-(a-pi) (a-p,) 

g=P2(p, -p2j2. CL=(f2+g)K, 2k2 =1-f/$ (3.3) 

and assuming that p has its minimum value pz when z = 0, we obtain 

ptTj= P&3+132 -W-P2)cNW 

1+6+(1-6)cn(3pr) (3.4) 

and e(r) may be determined from (3.2). The symbol cn in (3.4) denotes the elliptic cosine 
function; the modulus k of the elliptic functions was defined in (3.3). 

The oscillation frequency o, is given by 

01 = 37rjl/ (2K(k)) (3.5) 

where K(k) is the complete elliptic integral of the first kind. Letting h-,-27/256, we 
obtain the frequency o, =9-\1(3)/8 of small linear oscillations in the neighbourhood of the 
equilibrium point p,, 8.. As h + 0 we have w, + 0, whence 

0, = -ahK + 0 
( 1 
IhI% , a=3%/4//2K[(~-~)/4]]=3,94 (3.6) 

When h > 0 (the domain of rotations) p(z) is given as before by formulae (3.3) and (3.4), 
except that now pz is a real root of the equation p* +pX = h. The angle 8 increases mono- 
tonically with ‘T and varies by 211 in “time” 6x/w,. The average frequency w, of rotations is 
given by 

02 = 7www) (3.7) 

As h+O wehave w,+O and 

02 =,hH /3+O(hX) (3.8) 
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where a is the constant of (3.6). If Ml, we have o, = 2hx + O(h-%). 
If h = 0, then either the system is in the equilibrium state p* = 0, or its trajectories are doubly 

asymptotic to that point. The maximum value of p on these trajectories is unity. Suppose that p 
takes this value when z = 0. Then along the doubly asymptotic trajectories 

p=4/(4+9~~), 8=[(21-l)x+arctg(3z/2)]13 (I =1,2,3) (3.9) 

These trajectories are the separatrices of the domains of oscillatory and rotational motion in 
Figs 2 and 3. Henceforth we shall denote each separatrix by S,. 

In the domains of oscillations and rotations of the unperturbed problem with Hamiltonian 
y. we can introduce action-angle variables I and w . The action Z(h) is defined in the oscillatory 
domain by the integral 

I = (2x)-‘&xfe (3.10) 

where p is the function of 8 and h is defined by (3.2), and the integral is evaluated along a 
closed phase curve of Fig. 3 surrounding the equilibrium position p., 8,. The function inverse 
to (3.10) gives an expression for the unperturbed Hamiltonian in terms of the action variable: 
~0 = W). 

In the limiting case h = -271256 (equilibrium) and h= 0 (separatrix) Z equals 0 and 1112, 
respectively. Figure 4 shows a graph of the function Zru); graphs of o, = dhldl and dw, ldl 
plotted against h are also shown. 

Near the separatrix we have the following expansions 

In the domain of rotations the action Z is defined by the integral 

I = (2X)-i ypde 
0 

where p= p(O, /I) is found from (3.2). As /I -+ 0 we have Z + l/4; if Z&l, then 
O(hmX). Graphs of the functions /l(Z), w? =dhldZ and dw,ldZ are shown in Fig. 5. 
separatrices 

h(Z)=2KaX(4Z-1)~/108+0((4Z-1)2) 

do, /dI=2Ka31(41-1)-X /9+0(1)=c~~h-~ /27+0(l) 

l=hx+ 
Near the 
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L ----- 
Fig. 5. 

The Hamiltonian y0 of the unperturbed motion is non-degenerate in the domains of both 
oscillatory and rotational motion: the derivative d*hld1* does not vanish-it is negative in the 
oscillatory domain and positive in the rotational domain. 

4. PERTURBED MOTION IN THE DOMAINS OF OSCILLATION AND ROTATION 

Let us assume now that E is small but non-zero. When E +O the equilibrium positions 
p.=9/16, 8.= (21-- l)rc/3 (I = 1, 2, 3) are replaced by 6x-periodic motion (with respect to the 
original independent variable t) which depends analytically on E. This follows from Poincare’s 
theory of periodic motion in quasi-linear systems [7], since the frequency of small linear 
oscillations of the unperturbed system (3.1) in the neighbourhood of the equilibrium p*, 8, is 
&‘94(3)~* /(8 Ic I) and if E is small enough this cannot be a multiple of the frequency of periodic 
perturbation, which is l/3. 

Computations show that the Hamiltonian (2.8) normalized in the neighbourhood of the 6rr- 
periodic motion, may be expanded up to second-order terms inclusive as follows: 

where Q, =94(3)/8+f,(&), SL, =-13/2+f,(~), and J(E) tends to zero as E + 0. Since R, does 
not vanish for 0 < ~41, it follows that the periodic motion in question is stable in Lyapunov’s 
sense for sufficiently small E [8,9]. 

The perturbed motion in the neighbourhood of the separatrices (3.9) will be considered 
later. But if we exclude a small neighbourhood of the separatrices, the Hamiltonian (2.8) will 
be analytic as a function of the action-angle variables, and moreover, as already remarked, its 
unperturbed part will satisfy non-degeneracy conditions in both the oscillatory and rotational 
domains. Therefore [lo], most of the phase trajectories lying in these domains give rise to 
quasi-periodic motions when E is small. 

In the space spanned by 6, p, t (or x,, x,, t), planes t = const separated by distances that are 
multiples of 6rc may be identified. On the surface of the “section” t = 0 the above-mentioned 
conditionally periodic trajectories coincide with the closed phase curves of Fig. 3 (or Fig. 2) 
when E = 0. For small but non-zero E, most of these curves remain closed, experiencing only 
slight deformations (together with E). By [ll], the Lebesgue measure of the phase curves that 
“rupture” when E f 0 is exponentially small; in the problem being considered here it is of the 
same order of magnitude as exp(-c,e-*) (c, > 0 = const). 

5. PERTURBATION OF DOUBLY ASYMPTOTIC TRAJECTORIES 

The homoclinic doubly asymptotic trajectory-separatrices (3.9) may be viewed as curves 
formed by two asymptotic trajectories S,+ and S; : for S,+ the trajectory approaches the origin 
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asymptotically as t + +=, and for S; it does so as t + -. The trajectories S,+ and S; coincide 
and form the separatrix S,, in the phase plane of the unperturbed system (3.1). 

When E it: 0 the role of such a separating curve is played by a certain curve Se. When E = 0 it 
coincides with S,,, but for 0 < ~41 it is generally the union of two branches S: and S;. A point 
of the phase plane belongs to Si(S;) if the trajectory of the perturbed system starting at that 
point when r = 0 approaches the origin as t + += (t + --). When SJ and S; do not coincide, 
one says that the separatrix has split. The phenomenon was already observed by Poincare [12]. 

Consider the following 2x-periodic function of a 

where (yO, yJ denotes the Poisson bracket, calculated along the double asymptotic trajectory 
(3.9), with the “time” 2, which occurs explicitly in yl, replaced by z+2al(3h). The function 
(5.1) depends on a parameter h and on a number 1 (I = 1, 2, 3) indicating which of the traject- 
ories (3.9) is being considered. Functions of this type are used in Mel’nikov’s method 1131, 
which gives an estimate in powers of E for the magnitude of the splitting of separatrices. In the 
simplest case, when the integral (5.1) is independent of E, if J(a) $0 splitting occurs, and if the 
equation J(a) = 0 has a simple root, then S,+ and S; intersect an infinite number of times. This 
behaviour of the doubly asymptotic trajectories implies that the motion in the perturbed 
problem becomes chaotic. When the integral (5.1) depends on E the method of [13] may be 
difficult to apply. 

The evaluation and analysis of the integral (5.1) present a rather complex problem. It is 
somewhat simplified by the fact that one is investigating the behaviour of the perturbed system 
for small E, so that (see (2.11)) for our present purposes it will suffice to know the behaviour of 
(5.1) as h + +=. 

Taking into consideration that pX =-cos38 on the trajectories (3.9), we calculate the 
Poisson bracket (yO, rl) and then replace the variable of integration z in (5.1) by the variable 8 
defined in the second equality of (3.9). We obtain 

J(a) = TcOaz sef(e)de 
@I 

8, =(41-3)x/6, 8, =(41-1)x/6 

f(e) = -3pi3) + (ai4) - 4ai3’ + 2aj;‘))sin 28 - (pi”) + 4pi3) - 2p$4))c0s2e + 

+(2a4 (4)-5a13)+~a14))sin4e-(2P~4)-5P13)-~~p:4))~~~4e+ 

+6(ah4) - ai3’)sin 68 + 6pi3’ cos60 + W ai4) sin 88 - 

-x pi”) cos 88 + 4ai4’ sin 108 - 4pi4) cos 108 

(-p) = +f ’ 
I 

u?*~) exp(ika)exp(ikh tg38), py) = F’@m) exp(ika)exp(ikh tg38) 
k&-o. k=-w 

Consequently, evaluation of (5.1) reduces to the evaluation of integrals of the form 

9 
@” = f cos’ 38 sin 2nEI exp(ikh tg 3e)de, J:“*‘) = TACOS’ 38 cos 2ne exp( i&h tg 3e)de (5.2) 

81 01 

for n=O,l,... ,5 and integer k other than zero. After changing variables z = 38-(21-1)x we 
obtain the following expressions for the integrals (5.2) 

Jl(n,k) = i(,&.k’ _ U-il(-n.k)), 3, ,$,.k) = (,&,” + U-l/‘-n,k’), 3 
(5.3) 

u = exp[i2n(l-2)x/3] 

I(n.k) = Xl2 
j cos2zcos(khtg+)dz 
0 
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The last integral is expressed in terms of the Whittaker function [14]. When h + += it can be 
represented in the form 

pt.&) = 7al~lV’ 
8I-(1+ 

exp(-lkl h)( 1 + O(h-' )) (5.4) 

where r = sn I3 + 1, S = sigti and r is the gamma function. 
Let q (q>O) be the order of the lowest harmonic in the Fourier series (2.10). Then, using 

(5.2)-(5.4), we obtain that as h + += 

(5.5) 

where x, 6,, 6, are constants, x being independent of 1, the number p is one of 5/ 3, 613, 7/3, 
813, and 6, >1/3. 

The quantity J(a) is exponentially small as E -+ 0. Direct application of the method of [13] 
would therefore be illegitimate in this case, as it has not been shown to be applicable for 
problems with exponentially small splitting of separatrices. However, it is obviously correct to 
state that splitting of separatrices occurs in the case of the general position, and one obtains 
stochastic motion in the neighbourhood of the separatrices. We shall now present a non- 
rigorous discussion of some questions concerning perturbed motion near the separatrices. 

6. MOTION IN THE NEIGHBOURHOOD OF THE SEPARATRICES 

We will first consider a useful transformation in an arbitrary nearly integrable Hamiltonian 
system with one degree of freedom. Write the Hamiltonian in the form (2.8). When E = 0 the 
general solution of the differential equations (2.7) may be written in the form 

p=p(z+o,h), 8=8(z+a,h) (6-l) 

where CJ and h are arbitrary constants: Q is the value of the “phase” T+CJ at 2 = 0 and h the 
energy integral constant y&3, p) = h. 

It can be shown that if E # 0 and the equalities (6.1) are treated as a change of variables 0, 
p + (T, h, then this change of variables is a canonical univalent transformation. In the trans- 
formed system, CJ and h play the role of coordinate and momentum, respectively, and the new 
Hamiltonian will be the function y - y0 = EYE + . , . , with p and 8 replaced by the right-hand 
sides of (6.1) 

dh/&= --&a~, I a+. . ., daldz=&y,Alh+... (6.2) 

It can further be shown that the first-order terms in E in the first of equalities (6.2) may be 
written as E(Y,, y,), where the Poisson brackets are evaluated for the values of p and 8 in (6.1). 

To investigate the perturbed motion in the neighbourhood of the separatrix, we construct a 
separatrix mapping for the system with Hamiltonian (2.8). Separatrix mappings are effective 
tools for establishing the conditions for the onset of stochastic motion and for analysing its 
properties. They have been widely used in many problems of mechanics and physics [15-191. 

To obtain a separatrix mapping we use Eqs (6.2). Let ho and CJ, be the values of It and o at 
z = 0, and let I h, k 1. Let us determine the increment to h and o over one cycle of the motion; 
the duration of the cycle equals the period of the oscillations or one third of the “period” of 
rotations in a small neighbourhood of the separatrix. 

Sufficiently close to the separatrix, one can put k = 0 on the right-hand side of the first of 
Eqs (6.2) and approximate the increment 14 -/$ of h by integrating between infinite limits. We 
obtain 
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where the Poisson bracket is evaluated on the separatrix p = p(z + o,, 0), 8 = Q(z + o,, 0). Apply- 
ing the translation z + ‘c -6, in (6.31, we obtain 

h, =h,+&G(q)) 

where 8 and p are the functions given in (3.9). 
It follows from (3.6) and (3.8) that the duration of one cycle of motion near the separatrix is 

Zrcfr-’ Ih l-1’3 . Therefore 

The last term in (6.5) may be obtained by integrating the right-hand side of the second 
equation of (6.2) between infinite limits, as was done to evaluate the function G(a,) of (6.4). 
But it is easier to derive it from the condition that the mapping CT,, h, -+ o,, 4 defined by (6.4) 
and (6.5) should be canonical. Indeed, equating the first-degree terms in E on the right of the 
canonicity condition 

to zero, we at once obtain 

Ignoring terms of order Ed, we can now write (6.5) as 

If we also apply the change of variables CT = -2a/(3h), we can write the separatrix mapping as 

h, =h,+ti(a,), a, =a,-3na-ilhil-K (6.7) 

where f is the integral (5.1), and the values of h and cx are given by (2.11) and (3.6). 
Noting that when h s 1 the integral J(o) admits of the representation (5.5) and applying the 

change of variables j3 = qa+6,, we finally obtain the following approximate representation of 
the separatrix mapping for 0 < ~41 

h, = h, + &#S+ sin&,& = PO -3rcq~-‘Mh,I-X (6.8) 

Values of p differing from one another by a multiple of 27~ will be identified. 
Let us consider the fixed points of the mapping (6.8). At fixed points, h takes the values 

h=h,=&(3&/(2~n))~ (n=1,2,3...) (6.9) 

and p is either /3(l) = 0 or PC’) = n. The upper sign in (6.9) corresponds to rotations and the 
lower sign to oscillations. 

Analysis shows that the fixed points II, PC’) are stable in the linear approximation if it is true 
that 
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1 - E(-# “Xcir 

2&i/L$ 
hP+‘e-9A < 1 (i = 1,2) 

If the sign of this inequality is reversed, we get instability. In particular, if I/L I is small 
enough 

(6.10) 

then all the fixed points of the separatrix mapping are unstable. 
In the perturbed problem, stochastic motions arise for arbitrarily small (but non-zero) 

values of E. A stochastic layer forms fairly close to the separatrix. We will estimate its width 
using Chirikov’s method [S-17]. To that end, consider the linearized separatrix mapping (6.8) 
in the neighbourhood of the values of h, corresponding to its fixed points. Putting 

and linearizing (6.8) with respect to P, we obtain the mapping 

4 =P,+Ksin&, Pi =Pa+P; (6.11) 

where K is the stochasticity parameter, defined by the formula 

(6.12) 

In the theory of stochastic motion, the mapping (6.11) is called a standard mapping (161. 
An estimate for the width of the stochastic Iayer may be obtained [15-171 from the inequality 

I K I > 1. Using (6.12), we can write this inequality in the form (6.10) by formally replacing 4a 
by a. 

This approximate estimate for the half-width of the stochastic layer may be improved [16] by 
a careful study of the properties of the standard mapping (6.11), but for small E the order of 
magnitude of the half-width remains equaf to emb exp(-c,e-*) (b = 3(2p + 1) I4, c, =I c I 4~~’ I6) 
and is the same as that of the expression on the right of the inequality. 

In conclusion, we note that, regardless of the instability of the equilibrium position x = y = 0 
of the initial system with Hamiltonian (l.l), trajectories beginning sufficiently close to the 
origin will remain throughout the motion in a bounded neighbourhood of the point x = y = 0. 
The above investigation has shown that for such trajectories p will never exceed a value close 
to unity. In the x,y plane, therefore, a trajectory x(t), y(t) will always remain inside a circle of 
radius 2%~ I c 1-l &(I+ y,(x(O}, ~~0)) f tpz(&)), w h ere y1 -+ 0 as x2(O)+ ~~(0) -+ 0 and vZ --+ 0 as 
E -+ 0. 
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